Unit group of some finite semisimple group algebras

نویسندگان

چکیده

Abstract We provide the structure of unit group $${\mathbb {F}}_{p^k}S_n$$ F p k S n , where $$p>n$$ > is a prime and $$S_n$$ denotes symmetric on n letters. also complete characterization algebra {F}}_{p^k}A_6$$ A 6 for $$p\ge 7$$ ≥ 7 $$A_6$$ alternating 6

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some exponential inequalities for Semisimple Lie group

Let ‖| · ‖| be any give unitarily invariant norm. We obtain some exponential relations in the context of semisimple Lie group. On one hand they extend the inequalities (1) ‖|e‖| ≤ ‖|eReA‖| for all A ∈ Cn×n, where ReA denotes the Hermitian part of A, and (2) ‖|e‖| ≤ ‖|ee‖|, where A and B are n×n Hermitian matrices. On the other hand, the inequalities of Weyl, Ky Fan, Golden-Thompson, Lenard-Thom...

متن کامل

Finite Generation of the Cohomology of Some Skew Group Algebras

We prove that some skew group algebras have Noetherian cohomology rings, a property inherited from their component parts. The proof is an adaptation of Evens’ proof of finite generation of group cohomology. We apply the result to a series of examples of finite dimensional Hopf algebras in positive characteristic.

متن کامل

Wedderburn decomposition of finite group algebras

We show a method to effectively compute the Wedderburn decomposition and the primitive central idempotents of a semisimple finite group algebra of an abelian-by-supersolvable group G from certain pairs of subgroups of G. In this paper F = Fq denotes a finite field with q elements and G is a finite group of order n such that FG is semisimple, or equivalently (q, n) = 1. The group algebra FG is a...

متن کامل

Classification of Finite-dimensional Semisimple Lie Algebras

Every finite-dimensional Lie algebra is a semi-direct product of a solvable Lie algebra and a semisimple Lie algebra. Classifying the solvable Lie algebras is difficult, but the semisimple Lie algebras have a relatively easy classification. We discuss in some detail how the representation theory of the particular Lie algebra sl2 tightly controls the structure of general semisimple Lie algebras,...

متن کامل

Terwilliger Algebras of Some Group Association Schemes

The Terwilliger algebra plays an important role in the theory of association schemes. The present paper gives the explicit structures of the Terwilliger algebras of the group association schemes of the nite groups PSL(2, 7), A6, and S6.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Egyptian Mathematical Society

سال: 2022

ISSN: ['1110-256X', '2090-9128']

DOI: https://doi.org/10.1186/s42787-022-00151-0